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A two-zone method with an enhanced accuracy for a
numerical solution of the diffusion equation
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Abstract

A variational principle is applied to the diffusion equation to numerically obtain the fission gas release from a spherical
grain. The two-zone method, originally proposed by Matthews and Wood, is modified to overcome its insufficient accuracy
for a low release. The results of the variational approaches are examined by observing the gas concentration along the
grain radius. At the early stage, the concentration near the grain boundary is higher than that at the inner points of
the grain in the cases of the two-zone method as well as the finite element analysis with the number of the elements at
as many as 10. The accuracy of the two-zone method is considerably enhanced by relocating the nodal points of the
two zones. The trial functions are derived as a function of the released fraction. During the calculations, the number of
degrees of freedom needs to be reduced to guarantee physically admissible concentration profiles. Numerical verifications
are performed extensively. By taking a computational time comparable to the algorithm by Forsberg and Massih, the
present method provides a solution with reasonable accuracy in the whole range of the released fraction.
� 2006 Elsevier B.V. All rights reserved.

PACS: 28.41.Ak; 66.30.�h
1. Introduction

A distinctive feature in a fuel performance code
relative to others is the consideration of a fission
gas release during reactor operation [1]. Numerous
models have been developed to understand the fis-
sion gas release (FGR) where the flux of gas atoms
to the grain boundaries is described by a diffusion
equation together with proper boundary conditions.
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The solutions of the equation are sought analy-
tically as well as numerically [2–6]. Among the
numerical treatments, the variational principle
applied to the equation is regarded as one of the
most suitable methods in the sense of an accuracy
and efficiency. A finite element (FE) analysis is this
kind of method. The accuracy of the FE analysis
depends principally on how many meshes are
employed and how well the trial functions represent
the profile of the gas concentration.

Since a great number of solving the diffusion
equation is required during a fuel performance anal-
ysis, the calculation speed is increased by impair-
ing the accuracy of the solution with a fewer
.
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Fig. 1. Normalized gas concentration along the normalized
coordinate from the exact solution for a zero initial condition
and constant gas generation rate. (a) Early stage and (b) later
stage.
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number of meshes. The two-zone method proposed
by Matthews and Wood [4], follows a similar
approach. Although the two-zone method requires
three degree of freedoms (DOF) with two quadratic
elements for a whole spherical grain which is
divided into two concentric regions, it was reported
to have a lower accuracy for a low release of less
than 2%. The FGR of 1–2%, however, is the most
important value around which a significant fission
gas begins to release through open pathways formed
due to the saturation process of the grain bound-
aries [7].

As the fission gas atoms are not diffused out to
the grain boundary at an early stage of FGR, there
is a steep gradient in the gas concentration near the
grain surface. Such an abrupt change is described
more reasonably by refining the meshes near the
surface [8–11]. Furthermore, a more accurate solu-
tion can be obtained with the same number of
meshes by introducing a mesh adaptivity which is
explained by employing a suitable re-meshing tech-
nique through relocating the finite element (FE)
nodes [12]. The mesh adaptivity is known to be
effective in describing the steep gradient of a solu-
tion in a problem domain, for example, for a
wetting of open porous materials [13]. Another
important issue in the numerical solution of the
transient diffusion equation is the interconnection
of the spatial mesh size and the time step. An inap-
propriately small time step may result in a physi-
cally non-meaningful and spurious oscillation.

In this paper, the two-zone approaches are fur-
ther extended to provide accuracy comparable to
that of the FEM with very fine meshes at an early
stage as well as at a higher release. This is accom-
plished not only by introducing the strategy of mov-
ing the interface between the two concentric regions
which corresponds to the mesh adaptivity, but also
by decreasing the number of the DOF for the
problem.

2. Solution methods for the fission gas release

The diffusion equation in spherical coordinates,

ocg

ot
¼ 1

r2

o
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Deff r2 ocg

or

� �
þ b ð1Þ

is solved with the boundary conditions, cg = 0 at
r = a and ocg/or = 0 at r = 0, where a is the grain
radius, Deff the effective diffusion coefficient of a
gas atom, and b the number of gas atoms produced
per fission event.
2.1. Analytical solutions

For a zero initial condition and a constant gas
generation rate, the exact solution of Eq. (1) is given
by [14]

cgn ¼ 1� q2 þ 12

p3q
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where cgn is the normalized gas concentration which
is defined by 6Deffcg/ba2, the normalized time
s = Defft/a2, and the normalized radial coordinate
q = r/a.

Using Eq. (2), the fractional release can be
obtained by

f ðsÞ ¼ 1� 1
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Fig. 2. Variation of temperature for a reference problem [15].

Fig. 3. Fractional release from finite element analysis with fixed
nodal positions.
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Fig. 1 shows the distribution of cgn along q which
is calculated from Eq. (2). In this figures, the nor-
malized time and the corresponding released frac-
tion are noted. At an early stage, the distribution
of cgn is nearly flat in most of the grain. It also
exhibits an abrupt drop near the surface, whose
coordinate moves inward in proportion to the
released fraction. The maximal concentration is
always located at the center of the grain. Later,
the distribution of the gas concentration can be
described well by the quadratic function.

In the case of a time-varying gas generation, the
fractional release is obtained by using a quasi-exact
solution [5] which is used in the ANS-5.4 algorithm
[3].

2.2. Numerical solutions using a variational

method

An attempt to apply the variational principle to
the problem of a fission gas release was made by
Matthews and Wood [4]. The spherical grain is
divided into two concentric regions of almost an
equal volume, which are designated as region I
and II, respectively. Three nodal points are
required; the midpoint radius of region I (q1 =
0.4), the interface between the regions (q2 = 0.8),
and the midpoint radius of region II (q3 = 0.9).
The concentrations at these points are represented
by c1, c2, and c3, respectively. Quadratic functions
are employed to represent the concentration profile.

The accuracy of such a variational method with
fixed nodal positions is examined in more detail.
With increasing the number of the concentric
regions, i.e., the number of quadratic FE, the frac-
tional release is calculated for a reference problem
as shown in Fig. 2 [15]. A commercial finite element
code, ABAQUS [16] is used for this purpose.

The gas concentration and the fractional release
are calculated for the three cases as follows:

(a) The number of FE is 10, and the ratio of the
element length between the neighbors is 1.1.

(b) The number of FE is 10, and the grain is
divided into two layers whose interface is
located at an order of magnitude of the resolu-
tion depth k from the grain surface. The inner
and outer layers have 9 and 1 quadratic ele-
ments, respectively. The ratio of the element
length is 1.1 and 1.0 for the two layers.

(c) All the conditions except for the number of
FE are the same as those of Case (b). It is
increased up to 50 which are distributed as
40 and 10 for the two layers. The number of
FE and the distribution are the same as those
used in the previous work [8] to obtain
‘numerically exact’ solutions.

Fig. 3 shows the released fraction as a function of
the time. The released fraction at the early stage is
inaccurately estimated even if the number of the
FE is increased by as many as 10 which are even
higher than those employed in the literature [4,9].
Meanwhile, Rest [11] modified the two-zone method
by locating q2 at k to represent a more accurate con-
centration gradient near the surface. However, it
resulted in an unacceptable response for the temper-
ature history of Fig. 2 [17].

The investigation of a gas concentration profile
makes it possible to find out why the numerical
methods with a limited number of the elements



Fig. 4. Gas concentration along normalized radius from numer-
ical methods with fixed nodal positions.
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having a fixed nodal positions exhibit inaccuracies
at an early stage. The gas concentration is plotted
in Fig. 4 at the time of 40 s in the temperature his-
tory of Fig. 2. It is fluctuating near a grain surface,
especially very seriously if an outer layer is not
included in the FE model. Fig. 4 also shows the
result from the two-zone method where the maxi-
mum of the gas concentration is present near the
surface. In comparison, no fluctuations appear
and the maximum is located at the center of the
grain as in the exact solution shown in Fig. 1, when
the number of FE is increased to 50.

It was reported that the same phenomena were
present in the numerical solution of the transient
heat equation to which the conventional Galerkin
FEM was applied [18]. Here wiggles are generated
near the boundary at an early time since the number
of FE and the distribution are inappropriate to
represent the temperature of a problem domain,
especially near its surface. The spurious oscillation
is more pronounced when using quadratic elements.
In this regard, commercial FE codes recommend
that a time increment be larger than the minimum
usable one which depends on the element size and
material properties [16]. For a FGR problem where
a few quadratic elements are used to solve the diffu-
sion equation, it is very likely that such fluctuations
are inevitable in the vicinity of the surface when a
rapid change of the temperature occurs.
Fig. 5. The locus of the radial point as a function of the released
fraction at which the concentration is equal to 0.95 times its
maximum.
3. Adaptive two-zone method

The two-zone approximation is modified to
assure an enhanced accuracy while maintaining its
efficiency as much as possible. Two strategies are
implemented. Firstly the coordinates of the three
nodal points are not fixed. Instead, they are changed
in proportion to the released fraction. Secondly the
number of DOF needs to be reduced so that the dis-
tribution of the gas concentration is always physi-
cally admissible.
3.1. Moving nodal points and trial functions

The movement of the nodal points is imple-
mented by controlling the interface between the
two-zones to obtain a more accurate distribution
of the gas concentration near the surface. In
Fig. 1(a), the profile of the gas concentration in a
grain can be divided into two parts; the flat one
and the other having the steep gradient. If q2 is set
to be located around the boundary of the two parts
at every moment, it is possible that the gas concen-
tration for both parts is described by the inner and
outer trial functions of the two-zone approximation,
respectively.

As the released fraction increases, one can calcu-
late the locus of q at which the concentration is
equal to 0.95 times its maximum by using Eqs. (2)
and (3), which is designated as qdrop. As shown in
Fig. 5, qdrop seems to be almost linear with respect
to the fractional release. The distribution of the
gas concentration is represented well if qdrop is
assigned as q2, and updated with the fractional
release during the calculations. However, the rela-
tionship in Fig. 5 is neither applicable to the time-
varying problem nor known in advance. It is
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assumed that q2 is updated by the linear equation as
follows:

q2ðtÞ ¼ 1� jd � f ðtÞ; ð4Þ

where f is the fractional release, and jd is a factor in
the range of 0.5–1.05 which controls the update of
q2. The quadratic trial functions, C1 and C2 are a
function of q2 which varies during the calculations.
The lower limit of q2 is 0.8. q3 is the midpoint of q2

and 1, and q1 is fixed at 0.4. In this way only q2 is an
independent variable.

C1 and C2 are derived by applying the boundary
conditions at q = 0 and q = 1, and a continuity of
the gas concentration at q2. The trial functions are
as follows:

For the inner region,

C1ðqÞ ¼
25ðq2

2 � q2Þ
25q2

2 � 4
c1 þ

25q2 � 4

25q2
2 � 4

c2; ð5Þ

and for the outer region,

C2ðqÞ ¼
ðq� 1Þð2q� q2 � 1Þ

ðq2 � 1Þ2
c2

þ 4ðq� 1Þðq2 � qÞ
ðq2 � 1Þ2

c3: ð6Þ
3.2. Stiffness matrix and load vector

The gas concentration c0
g at a time t becomes cg

after an increment of time dt. After integrating the
diffusion equation for dt by using the backward
Euler method, the variational form is derived by
taking the product of the time-integrated diffusion
equation with a trial function and integrating it over
the domain. This gives

d
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Inserting the trial functions into Eq. (7) and min-
imizing the integral with respect to c1, c2, and c3,
leads to a set of equations,

Kcg ¼ b; ð8Þ

where K represents the global stiffness matrix, cg the
concentration vector, and b the load vector. K and b

are the function of q2.
Non-zero elements of the symmetric matrix K

are given by
K11 ¼
50A8

W 2
1
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dt
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1
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ð9Þ

where Wis and Ais are defined in Appendix A.
The last term in the integrand of Eq. (7) contains

the product of cg and c0
g, which affects only b. The

interval of the integral needs to be adjusted as
follows:

if q2 6 q20,Z 1
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where q20 is the interface coordinate at a time t.
Thus b has two cases depending on the magni-

tude of q2 relative to q20. In the range of q2 to
q20, however, the difference between C1 and C2 is
so small that only Eq. (10) is employed to calculate
the integral irrespective of the sign of q2 � q20.

The elements of b, bi are arranged in a simplified
form as a function of q20 � q2,

bi ¼
1
�bi

Xm

j¼0

b̂i;jðq20 � q2Þ
j
; ð12Þ



144 J.-S. Cheon et al. / Journal of Nuclear Materials 359 (2006) 139–149
where �bi and b̂i;j are the denominator and the
coefficient of the numerator, respectively. �bis are
given by

�b1 ¼ 21dtW 1W 10=A8;

�b2 ¼ 420dtW 1W 10;

�b3 ¼ 105dtW 10:

ð13Þ

In addition, b can be simplified further. Although
m is in the range of the third to the ninth order, the
contribution from the terms higher than the first
order in Eq. (12) is negligible due to the small value
of q2 � q20. Thus Eq. (12) is approximated by

bi � ðb̂i;0 þ b̂i;1ðq20 � q2ÞÞ=�bi; ð14Þ

where b̂i;0 and b̂i;1 are summarized in Table 1, and
Yis are given in Appendix A.

3.3. Solutions of the system

In Eq. (9), let K1 = K11, K2 = K12, K3 = K22,
K4 = K23, and K5 = K33.

The solution of the system of Eq. (8) is obtained
simply by

c1 ¼ ðb1K2
4 � b3K2K4 þ ðb2K2 � b1K3ÞK5Þ=jK3Dj;

c2 ¼ ðb1K2K5 þ K1ðb3K4 � b2K5ÞÞ=jK3Dj;
c3 ¼ ðb3K2

2 � b1K4K2 þ K1ðb2K4 � b3K3ÞÞ=jK3Dj;
ð15Þ

where jK3Dj ¼ K5K2
2 þ K1ðK2

4 � K3K5Þ.
The average gas concentration, �cg is given by

�cg ¼
A8

W 1

c1 þ
Y 1

20W 1

c2 þ
W 2Y 6

5
c3: ð16Þ

In case of q2 = 0.8, K, b, and �cg are reduced to
those obtained by Matthews and Wood [4].

If the three DOFs are used fully during a whole
stage, spurious fluctuations occur as shown in
Fig. 4. Avoiding such an unacceptable profile is
crucial in achieving a precise released fraction. This
Table 1
Coefficients of the numerators of the load vector

b̂i;j ¼ f � bdt þ n1 � c10 þ n2 � c20 þ n3 � c30

f n1 n2 n3

b̂1;0 7W1 10A9 A1 0
b̂1;1 Y8 Y8 0 0
b̂2;0 7W1Y1 20A1A8 2A3 4A5W 2

1W 2

b̂2;1 Y1Y8 70A2
9Y 7 2W1Y2 �8W1 Y3

b̂3;0 7W1W2Y6 0 A5W1W2 8A7W1 W2

b̂3;1 W2Y6Y8 0 Y4 �4Y5
phenomenon can be written mathematically: the
apex of C2, q2v is larger than q2, or c1 is less than
c2. In order to ensure that the gas concentration
decreases monotonically, the number of DOF of
Eq. (8) is reduced by the following criteria: oC2/
oq = 0 at q2 if q2v is larger than q2 or if c1 is less
than c2. Here the condition oC2/oq = 0 leads to

q2v ¼
c2ð3þ q2Þ � 4c3ð1þ q2Þ

4ðc2 � 2c3Þ
: ð17Þ

In either case the DOF decreases from three to
two. The condition of oC2/oq = 0 at q2 results in
c3 = 3c2/4. Furthermore, if the system having the
reduced DOF of 2 gives a solution such that c1 is
less than c2 once again, c1 is set to be equal to c2.
Thus the degree of freedom becomes one. Fig. 6
summarizes these criteria by which the solution of
the system is determined during the calculations.

When DOF = 2, the concentrations at the nodal
points are given by

c1 ¼ ð�16b2K2 � 12b3K2þ 16b1K3 þ 24b1K4þ 9b1K5Þ=jK2Dj;
c2 ¼ 4ðð4b2 þ 3b3ÞK1 � 4b1K2Þ=jK2Dj;
c3 ¼ 3c2=4;

ð18Þ
where jK2Dj ¼ K1ð16K3 þ 24K4 þ 9K5Þ � 16K2

2.
When DOF = 1, the concentrations at the nodal
points are given by

c1 ¼ c2;

c2 ¼ 4ð4b1 þ 4b2 þ 3b3Þ=jK1Dj;
c3 ¼ 3c2=4;

ð19Þ

where jK1Dj = 16K1 + 32K2 + 16K3 + 24K4 + 9K5.
For both cases with the reduced DOF, Eq. (16) is
also valid for �cg.

3.4. Convergence criterion and automatic time

integration

In the adaptive two-zone method, K and b are a
function of q2 which in turn is updated depending
on the released fraction f. At every time step, sev-
eral iterations are required to satisfy a convergence
criterion of f which is given by

ei ¼
f ðpÞ � f ðp�1Þ

f ðp�1Þ ; ð20Þ

where the superscript p represents the p’th iteration.
If a convergence is not reached within a given num-
ber of iterations, a solution is sought again with a
reduced time increment.
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Fig. 6. Flowchart describing how DOF of the problem are determined.
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To obtain a more efficient solution from the pres-
ent method, an automatic time-integration method is
employed. The time increment of the next time step
Dtn+1 is predicted by comparing the fractional release
between the consecutive time steps as defined by

Rf ¼
jf ðtnÞ � f ðtn�1Þj

f ðtn�1Þ
: ð21Þ

Depending on the magnitude of Rf, Dtn+1 is auto-
matically updated by the criteria

Dtnþ1 ¼
0:5Dtn if 0:1 < Rf ;

Dtn if 0:1c < Rf 6 0:1;

2Dtn if Rf 6 0:1c;

8><
>: ð22Þ

where c is a factor controlling the update of the time
increment.

In a reference calculation, the computational
time of the adaptive two-zone method is compared
with that of the algorithm by Forsberg and Massih
[19,20] which is known for its superiority in the
sense of an accuracy and efficiency. It is designated
as the Forsberg–Massih algorithm. Compared to
the Forsberg–Massih algorithm, the present method
takes more computational time by about 40%. The
computational time is measured by the total CPU
time excluding input and output operations under
the fixed time increment. Adopting the automatic
time integration given in Eq. (22) makes it possible
to reduce it substantially without a noticeable loss
of the accuracy of the solutions.
4. Verification of the adaptive two-zone method

The validity of the proposed method is examined
by comparing the fractional release with the refer-
ence solutions for a number of temperature and
gas generation conditions. The fission rate is
assumed to be linearly proportional to the tempera-
ture. The result of the ANS-5.4 algorithm is mainly
used as the exact solution. To confirm the soundness
of the present method as a numerical algorithm, the
FEM solution with 50 quadratic elements is also
obtained for every calculation.

The expression for the diffusion coefficient of the
gas atoms is given in Table 2 [8]. The grain radius of
5 lm is used in the calculations.



Table 2
Diffusion coefficient used in the calculations [8]

Expression D0 + D1exp(�Q1/kT)
+ D2exp(�Q2/kT)

D0 2.04 · 10�21 m2/s
D1 2.1 · 10�7 m2/s
D2 2.31 · 10�15 m2/s
Q1 3.85 eV
Q2 1.37 eV
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Fig. 7 shows an example of the responses of the
gas released fraction as a function of the time. The
temperature is fixed at 1200 �C.

The results from the reference FEM and the pres-
ent method lie very close to the solution from the
Booth approximation [2]. In the range of the frac-
tion release less than 0.1, both numerical methods
Fig. 7. Calculated fractional gas release as a function of the time
at 1200 �C.

Fig. 8. Calculated fractional gas release as a function of the time
for varying gas generation.
overestimate it by 10% or so. Although the error
in this lower range depends more or less on how
the time integration is performed, it is comparable
to the other numerical methods [6,15,20]. The rela-
tive error becomes less than 1% at the end of the
calculation.

At a very low time, for example, 1000 s, the
released fraction is calculated to be 0.0036, 0.0051,
and 0.0048 from the Booth approximation, the
reference FEM, and the adaptive two-zone method,
respectively. In view that the Forsberg–Massih algo-
Fig. 9. FEM with 50 elements versus ANS-5.4 algorithm.
(a) Whole range and (b) low release range.
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rithm, whose accuracy was recently enhanced, has a
maximum absolute error of 0.0014 [20], the present
method yields quite an acceptable solution in the
very low released fraction.

Fig. 8 shows the calculated fractional gas release
as a function of the time when the temperature is
subjected to changes as shown in Fig. 2. The present
method gives a response very close to the reference
solutions even though it is overestimated slightly
during a temperature decrease and at the later
stages.
Fig. 10. Present method versus ANS-5.4 algorithm. (a) Whole
range and (b) low release range.
By applying the methodology proposed by Lass-
mann and Benk [6], the present method has been
extensively verified. For 2000 individual power his-
tories which were randomly generated, the frac-
tional release is compared with the solution from
the ANS-5.4 algorithm. Each power history consists
of 2–7 power stages during which the temperature is
assumed to be constant in the range of 550–1550 �C.
The number of the verification cases versus the frac-
tion release follows a normal distribution with
the mean of zero, where the cases in which the
Fig. 11. Present method versus ANS-5.4 algorithm under a
different moving strategy for q2. (a) Whole range and (b) low
release range.
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released fraction is less than 0.3 are dealt with in
more detail.

Fig. 9 shows the results from the reference FEM
with 50 quadratic elements. For a comparison,
those from the adaptive two-zone method are pre-
sented in Fig. 10. There exist some variations
around the 45� line with a minor over-prediction
in the lower range for both methods. The present
method provides results equivalent to the reference
FE calculation, even though there are a few cases
showing a higher deviation. This is caused by an
inappropriate relocation of q2 during a lower tem-
perature following a stage at which the temperature
is rather high, and the fractional release in the lower
range is less than 0.2.

The scattering around the 45� line shown in
Fig. 10 is affected by what is chosen as jd in Eq.
(4) for an updated q2. Fig. 10 is generated by taking
jd equal to 1.05. If jd = 0.5, the overall predictabil-
ity seems to be improved in the whole range. In the
lower range as shown in Fig. 11, meanwhile, the
average of the predicted values lies a bit higher than
the 45� line when compared to jd = 1.05.

The analysis above proves that the adaptive two-
zone method is successfully applied to obtain the
solution of the diffusion equation. The present
method could be extended to treat numerically cou-
pled equations in order to describe more complex
behaviors at the grain boundaries, for example, to
model the diffusion of gas atoms in the presence
of an irradiation-induced resolution from a grain
boundary.
5. Conclusion

An adaptive variational method has been deve-
loped to solve the diffusion equation for a fission
gas release effectively and accurately. This approach
is even more precise than the conventional two-zone
method by Matthews and Wood, especially for a
lower gas release. The present method could be
easily applied to the situations with a non-zero gas
concentration at the grain boundary.
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Appendix A

The coefficients Wi, Ai, and Yi for the stiffness
matrix and the load vector in Eq. (8) are given by

W 1 ¼ 25q2
2 � 4;

W 10 ¼ 25q2
20 � 4;

W 2 ¼ 1� q2;

A1 ¼ 75q2
2 � 28;

A2 ¼ 6875q6
2 þ 13125q5

2 � 2725q4
2 � 1800q3

2

� 232q2
2 þ 144q2 þ 48;

A3 ¼ 5000q7
2 þ 10625q6

2 � 1500q5
2 � 2775q4

2

� 32q3
2 þ 72q2

2 þ 64q2 þ 16;

A4 ¼ 13q2
2 þ 4q2 þ 3;

A5 ¼ 6q2
2 þ 2q2 � 1;

A6 ¼ 2q2
2 þ q2 þ 2;

A7 ¼ 2q2
2 þ 3q2 þ 2;

A8 ¼ 10q5
2;

A9 ¼ 10q2
2;

Y 1 ¼ 75q5
2 þ 175q4

2 þ 31q3
2 � 53q2

2 � 12q2 þ 4;

Y 2 ¼ 700q4
2 þ 1275q3

2 � 38q2
2 � 18q2 � 8;

Y 3 ¼ 700q4
2 þ 25q3

2 � 138q2
2 þ 5q2 � 4;

Y 4 ¼ 350q4
2 þ 650q3

2 þ 171q2
2 � 122q2 � 20;

Y 5 ¼ 350q4
2 þ 150q3

2 � 149q2
2 � 208q2 þ 4;

Y 6 ¼ 3q2
2 þ 4q2 þ 3;

Y 7 ¼ 15q2
2 � 4;

Y 8 ¼ 350q2:
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